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Abstract. Very recently the atomic masses of neutron-rich Zr isotopes, from 96Zr to 104Zr, have been mea-
sured with high precision. Using a schematic Interacting Boson Model (IBM) Hamiltonian, the evolution
from spherical to deformed shapes along the chain of Zr isotopes, describing at the same time the excita-
tion energies as well as the two-neutron separation energies, can be rather well reproduced. The interplay
between phase transitions and configuration mixing of intruder excitations in this mass region is succinctly
addressed.

PACS. 21.60.Fw Models based on group theory – 27.70.+q 150 ≤ A ≤ 189

Nuclear masses and binding energies, or more in par-
ticular two-neutron separation energies (S2n), form a very
important observable that characterizes a given nucleus
and supply information about nuclear correlations provid-
ing at the same time a stringent test for nuclear models.

The goal of this paper is to make use of a technique de-
veloped in ref. [1] in order to describe at the same time the
energy spectra and S2n values obtained from a very recent
experimental study of masses for the neutron-rich Zr iso-
topes (see refs. [2,3]) and nearby Sr and Mo isotopes [4].
This transitional region is of particular interest because
a rapid change in the structure of Zr isotopes from mass
A = 98 onwards is observed, i.e. a rather sudden change
from spherical to well-deformed shapes [5–7]. This region
is known for the appearance of deformed intruder states
that even become the ground state and initiate the onset of
a region of deformed nuclei for the heavier Zr isotopes [8]
(beyond N = 58). Therefore, a study has been attempted
in order to analyze the experimental variation observed in
S2n values.

For a theoretical description of the Zr isotopes, en-
compassing both the low-lying excitations as well as the
intruder states, one should be using a very large shell
model configuration space using the corresponding effec-
tive nucleon-nucleon interaction [9]. An attempt in that
respect has been carried out for 92Zr [10] using a restricted
model space considering both proton and neuron orbitals
outside of a 88Sr core nucleus. In view of the fact that
besides neutrons filling the 50–82 shell one would need to
consider protons in the 28–40 shell, including proton ex-
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citations into the 1g9/2 configuration, calculations would
become unfeasible. Therefore, we start from a strongly
truncated model space, however keeping the pairing and
quadrupole force components within the Interacting Bo-
son Model (IBM) approximation [11]. This model approxi-
mates the interacting many-fermion problem using as ma-
jor degrees of freedom, N pairs of valence nucleons that
are treated as bosons, carrying angular momentum either
0 (the s-bosons) or 2 (the d-bosons). This model is very
appropriate in order to describe even-even medium-mass
and heavy nuclei and transitional nuclei. Even here, treat-
ing proton and neutron bosons explicitly, one risks to be
involved with too many model parameters. Therefore, in
the present description of the Zr isotopes, we make use
of an approach in which we restrict ourselves to the use
of identical bosons. This act of truncation naturally im-
plies that one has to replace the Hamiltonian by an effec-
tive IBM Hamiltonian describing the interactions amongst
these identical bosons [12]. Our approach here is very simi-
lar to a recent study of the Pt nuclei [13], a region in which
there exist clear indications of the presence of intruder ex-
citations.

The IBM Hamiltonian used is composed of a single-
boson energy term, a quadrupole and an angular-
momentum term,

Ĥ = εdn̂d − κQ̂ · Q̂+ κ′L̂ · L̂, (1)

where n̂d denotes the d-boson number operator and

L̂ =
√
10(d† × d̃)(1), (2)

Q̂ = s†d̃+ d†s̃+ χ(d† × d̃)(2). (3)
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We point out that in more realistic calculations, the values
εd > 0 and κ > 0 [14–18] have been used. Moreover, the
E2 transition operator is taken to have the same structure
of the quadrupole operator Q̂ appearing in the Hamilto-
nian,

Q̂(E2) = eeff Q̂. (4)

This approach is known as the Consistent-Q Formalism
(CQF) [19].

The definition of the two-neutron separation energies
is the following (starting from the binding energies):

S2n = BE(N)−BE(N − 1), (5)

where N denotes the number of valence nucleon pairs and
it is assumed that we are treating nuclei belonging to the
first half of the neutron shell (50–82) filling up with in-
creasing mass number.

The Hamiltonian (1) generates the energy spectrum of
each individual Zr nucleus and will be called “local Hamil-
tonian”. For the correct description of binding energies,
one needs to add that part of the Hamiltonian that does
not affect the spectrum and that will be called “global
Hamiltonian”(and so it depends on the total number of
bosons only [1]). The simplest interpretation of the IBM
global part comes from the fact that this part describes the
overall smooth varying energy term and can be associated
with the structure of the Liquid-Drop Model. Therefore,
the description we use, within the context of the IBM, is
somehow similar to the Strutinsky method [20,21] in the
sense that the global part takes care of the major contri-
bution to the nuclear binding energy BE, while the local
part, that is notably smaller, modulates this global be-
havior and describes the local correlations. An alternative
way to incorportate binding energy effects in the IBM re-
sults from explicitly taking into account the s-boson one-
body contribution εsn̂s and the s-boson two-body inter-
action energy u0s

†s†ss. One can, however, eliminate these
s-boson terms taking into account the conservation of the
number of bosons, giving rise to terms proportional to N
and N(N − 1) in the binding energies, while they are pro-
portional to N in the two neutron separation energies (see
ref. [22]). Thus, this procedure is equivalent to the method
used here and in ref. [1].

The contribution of the global part of the Hamiltonian
to the S2n is expressed as

Sgl
2n = A+ BN, (6)

where A and B are assumed to be constant along a chain
of isotopes (see [1]). Therefore,

S2n(N) = A+ BN +BElo(N)−BElo(N − 1), (7)

where BElo is the local binding energy derived from the
Hamiltonian (1).

In order to obtain a global description of the Zr
isotopes, we prefer to consider a reduced number of
parameters, keeping the Hamiltonian (1) as constant as
possible when passing from isotope to isotope. Because
the heavier Zr isotopes exhibit energy spectra that
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Fig. 1. Comparison between the theoretical and experimental
energy levels (refs. [23–28]) for the neutron-rich Zr isotopes.

are the more rotational, the ratios E(4+
1 )/E(2+

1 ) and
E(6+

1 )/E(2+
1 ) are used for fixing the parameters of the

Hamiltonian, while in the lighter and medium isotopes
the energies of the 2+

1 , 2
+
2 and 0+

2 states are used to fix
the Hamiltonian. The fact that, in particular, for the 4+

1

and 0+
2 states, large deviations appear when comparing

the calculated B(E2) values with the experimental data
(see also table 2), points out that large contributions of
configurations outside of the purely collective IBM model
space are present in those states. This effect is enhanced
for the low number of bosons present in the lighter
isotopes. Thus, even though we cannot describe nuclear
excited-state properties in detail for the light Zr nuclei,
what is, however, more relevant in the present study is
the important change in the low-lying energy spectra
when passing from mass A = 98 towards mass A = 100
that is reproduced rather well. This is also essential in
deriving the binding energy effects and the S2n values.

The experimental data for the different Zr isotopes
have been taken from refs. [23–30]. Note that in this re-
gion, one expects the presence of intruder states but, as
discussed before, those excitations are outside of the model
space and are absorbed within an effective way within the
changing parameters of the Hamiltonian (1) we are using
in the present study. Therefore, the intruder states should
be identified but not considered explicitly in the fitting
procedure; this is the main difference with the technique
used in ref. [13], where the intruder states are considered
in the fitting procedure. The more clear-cut examples, in
this region, where extra configuration and thus mixing will
appear, are 98Zr and 100Zr [6,31,32]. In 98Zr the 0+

3 state
at 1.436 MeV is supposed to form the head of an intruder
band [33]. This then could induce mixing between the 4+
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Table 1. Parameters, describing the IBM Hamiltonian of
eq. (1), for the Zr isotopes.

A 94 96 98 100 102 104

N 2 3 4 5 6 7

εd 0.550 0.750 0.380 0.311 0.211 0.213

κ 0.032 0.032 0.032 0.032 0.046 0.046

χ −0.8 −0.8 −0.8 −0.8 −0.8 −0.8

κ′ 0.05 0.17 0.15 0 0 0

states resulting in pushing down the 4+
1 state, whose en-

ergy is indeed overestimated by the IBM calculation (see
fig. 1). In the case of 100Zr, the 0+

2 state at 0.331 MeV
is considered as an intruder state, while the 0+

3 state at
0.829 MeV is considered to be the regular state. Therefore,
in fig. 1, the 0+ state that is plotted is indeed the state
0+
3 . Information on the characteristics of the excited 0+

states in these nuclei is gained by studying E0 properties
as discussed in detail by Wood et al. [7]. Note that in fig. 1
the theoretical states for the lighter isotopes with angular
momenta 6 and 8 stay out of scale, which shows again the
influence of the intruder states in the lower part of the
spectra. An additional problem in the description of this
region arises from the low number of bosons we should use,
in other words because of the proximity of the shell clo-
sure for neutrons. This creates two inconveniences; on the
one hand it is difficult to give a reasonable description for
high angular momentum (note that the maximum angu-
lar momentum one can construct coupling IBM bosons is
the double of the number of bosons) as observed recently
in 96Sr and 98Zr nuclei [34] and, on the other hand, in
the spectrum there appears non-collective excitation that
can only be described by a shell model calculation (see,
e.g., [10]).

There is a very poor knowledge of E2 transition rates
in this mass region and so it is difficult to fix the value
of parameter χ because its value it is not well defined
using the information about energy spectra only. There-
fore, its value is fixed taking into account the information
from other calculations addressing nuclei in nearby mass
regions [18].

In the present calculations, we count bosons starting
from a Z = 40, N = 50 core 90Zr which has a rather high-
lying first-excited state. This is at variance with recent
shell model calculations for this mass region [10] that start
from a 88

38Sr50 core. Since we make use of the interacting
boson model approach (IBM) that does not discriminate
between proton and neutron bosons, collective properties
are mainly governed by the symmetry structure of the
IBM Hamiltonian and the total number of bosons present.
Using proton and neutron boson degrees of freedom, in a
more detailed IBM study, one needs both proton and neu-
tron bosons to be active in order for collective deformation
effects to appear. This then would imply a different choice
of a closed proton core, conform with the shell model.

The parameters of the Hamiltonian are summarized in
table 1. Here, one notices that χ is fixed at the value of

Table 2. Comparison between experimental and theoretical
B(E2) values. The parameters of the quadrupole operator are
eeff = 0.159 eb and χ = −0.8.

Isotope Transition B(E2) (e2b2) B(E2) (e2b2)

Exp. Theo.
94Zr 2+

1 → 0+

1 0.013 0.053
94Zr 4+

1 → 2+

1 0.002 0.027
94Zr 0+

2 → 2+

1 0.370 0.037
96Zr 2+

1 → 0+

1 0.010 0.088
100Zr 2+

1 → 0+

1 0.226 0.226
100Zr 8+

1 → 6+

1 0.336 0.251
102Zr 2+

1 → 0+

1 0.297 0.347

−0.8. The values of κ are restricted to 0.032 MeV for the
Zr nuclei situated in the spherical and transitional region
and to 0.046 MeV for the Zr nuclei exhibiting rotational-
like energy spectra in the ground band. Note the high
value of εd in the case of 96Zr which is due to the ab-
normally high excitation energy of the 0+

2 state that is
described in terms of a subshell closure at the neutron
N = 56.

We present in table 2 the comparison between the ex-
perimental and theoretical E2 transition rates, keeping
χ = −0.8 and fixing eeff = 0.159 eb for reproducing the
B(E2; 2+

1 → 0+
1 ) value in 100Zr. The agreement of the re-

sults is reasonable except for the transitions 4+
1 → 2+

1 and
0+
2 → 2+

1 in 94Zr, which suggests that those states are
outside of the IBM collective space to a large extent, as is
also corroborated by the shell model calculations carried
out in 92Zr [10]. The 4+

3 state located at 2.330 MeV is a
good candidate as IBM partner, while there is no other
candidate for the 0+ state.

Once the energy spectra for the even-even Zr isotopes
have been fitted, one derives the global part of S2n (6)
assuming the equivalence

Sgl
2n ≡ A+ BN = Sexp

2n − Slo
2n. (8)

Note that the left-hand side of eq. (8) can be written in
terms of the atomic number, A, through a trivial trans-
formation in the parameters A and B. In practice, the
right-hand side of eq. (8) is not an exact relation but re-
sults approximately in a straight line. As a consequence
the linear part is derived from a best fit to the data points,
obtained when plotting the right-hand side of (8). We like
to stress at this point (see also ref. [1]) that both the re-
sults concerning relative energies (energy spectra) and the
energy surfaces do not depend on the values of A and B
as determined here.

The global part of S2n corresponds to the values A =
67.4 MeV and B = −0.946 MeV (using the atomic num-
ber, A, as variable). The comparison between the exper-
imental data and the theoretical results, combining the
global and the local part, is given in fig. 2. We like to
point out that the approximately flat behavior of S2n at
A = 100, 102 is rather well reproduced and corresponds
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Fig. 2. Two-neutron separation energies for neutron-rich Zr
isotopes. Full lines correspond to experimental data [2], while
dashed lines correspond to theoretical calculations.
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Fig. 3. Energy surfaces for Zr isotopes using the IBM intrinsic-
state formalism. The number on each curve denotes the atomic
mass number.

precisely to the neutron number where the energy spectra
rapidly change from spherical into deformed structures.

Extra information that can be obtained from the
present IBM calculation is the energy surface as a func-
tion of the deformation parameters. This can most easily
be studied using the intrinsic-frame formalism. Here, the
interacting many-boson problem is solved defining a new
kind of boson —dressed bosons— that is built as a linear
combination of s and d bosons and constructing a trial
wave function as a condensate of N such bosons [35,36].
The problem is solved by minimizing the expectation value
of the Hamiltonian with respect to the deformation pa-
rameters, that reduces to only one, β. In fig. 3, we present
the energy surfaces for the different Zr isotopes according
to the parametrization as described in table 1. It is clearly
observed that 94–98Zr remain spherical. Note that the flat
energy surface of 94Zr appears due to the low number of
bosons for this nucleus, N = 2, and to the fact that the
depth of the potential energy surface is proportional to

N(N − 1). 100Zr is a special case because this nucleus ap-
pears to be situated very close to the critical region where
two minima coexist [37], one spherical and one deformed.
One notices that the energy surface is very flat, which is
caused by the fact that a deformed minimum and a spher-
ical maximum appear, that are almost degenerate. This
indicates that one is close to the critical area [37] Finally,
102–104Zr become well deformed. Recent theoretical stud-
ies using relativistic mean-field (RMF) methods [38] (con-
centrating mainly on nuclear charge radii) and Hartree-
Fock-Bogoliubov (HFB) methods [39] (studying the Zr
isotopic chain up to the two-neutron drip line) have con-
centrated on shape properties and their variation from
spherical towards strongly deformed Zr nuclei.

In this brief report, we have studied the energy spectra
and the S2n values for the neutron-rich even-even Zr iso-
topes in a consistent way using the IBM framework. The
new experimental data on masses are rather well repro-
duced starting from a schematic calculation. From inspect-
ing the corresponding energy surface diagrams, one clearly
observes how the Zr isotopes evolve from spherical into de-
formed shapes passing through a region where two minima
exist. The calculations that have been carried out imply
the possible presence of a phase transition, being 98Zr an
almost critical nucleus. On the other hand, this mass re-
gion can also be described using configuration mixing (this
will be shown elsewhere) in such a way that for 98Zr, reg-
ular and intruder states coexist very closely in energy al-
though it should be necessary to see if the S2n values can
be appropriately described. Both descriptions can seem
equivalent, but there exist clear differences [40] in the size
of the model spaces. In the calculations carried out here,
the model space only consists of states with N bosons and
we can follow the sequence of all states within this space as
a function of the boson number and a smoothly changing
Hamiltonian (see eq. (1) and table 1). On the other hand,
when treating the presence of intruder states explicitly,
one has to expand the configuration space such that both
N and N+2 boson configurations are considered. It might
be that the occurrence of the deformed states as low-
est states, forming the ground-state band from 100Zr on-
wards, can be associated with an adiabatic crossing of the
more deformed (N+2 boson) configurations and the more
spherical (N boson) configurations [8]. A microscopic ori-
gin can then be related with the possibility of exciting
protons from the 2p1/2 into the 1g9/2 orbital and the sub-
sequent large proton-neutron interaction energy gain with
the neutron 1g7/2, 1h11/2 orbitals beyond N = 58 [41–44].
Clearly, more work needs to be carried out in order to
see if there exist mass regions where phase transitions are
induced by the presence of low-lying intruding configura-
tions and the corresponding configuration mixing.
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J.E. Garćıa-Ramos et al.: A theoretical description of energy spectra and two-neutron separation energies . . . 225

References

1. R. Fossion, C. De Coster, J.E. Garćıa-Ramos, T. Werner,
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